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Abstract
Quality-inspection strategies play a pivotal role in providing consumers with high-quality and defect-free products. In order to
withstand the competition, organizations have an increasing interest in designing quality controls that are effective in detecting
defects and economically viable. Recent studies have proposed a preliminary method to evaluate inspection effectiveness and
cost in low-volume assembly processes, characterized by the production of single units or small-sized lots, even spread in long
periods. Based on this method, the present paper aims to define a procedure to evaluate the robustness of defect and cost
predictions in quality inspections of low-volume productions. The research questions which are specifically addressed concern
how the uncertainty of models for defectiveness prediction can be assessed, and how this uncertainty may affect the selection of
the most effective and affordable inspection strategy. The proposed approach allows to accurately analyze and compare different
inspection strategies in terms of effectiveness and cost. First, the uncertainties of the statistical variables of the model for
defectiveness prediction are evaluated by applying the law of combination of variances. Then, by combining the contributions
of several inspection design parameters, the uncertainty is propagated to two indicators which quantify the overall effectiveness
and cost of inspection strategies. In order to test the proposed methodology, a practical application concerning the assembly of
mechanical components in an industrial manufacturing context is presented and discussed.

Keywords Quality control .Uncertainty evaluation . Inspection effectiveness . Inspection cost .Assembly process . Low-volume
production

1 Introduction

Organizations are increasingly interested in producing high-
quality products that meet customers’ requirements. Defects
generated during the production processes may significantly
impact on the final product, both in terms of quality and cost.
In this view, designing inspection strategies affordable and

effective in detecting defects occurring in the different produc-
tion phases has always been a challenging issue for manufac-
tures [1–5]. A considerable amount of scientific literature has
deeply focused on defects generated in assembly processes
[6–13]. Existing research recognizes the critical role played
by operators in causing defects during assembly processes [6,
9, 12, 14–18]. It has previously been observed that human-
induced defects in assembly process can be predicted using
assembly complexity. For instance, Hinckley [17, 18] correlat-
ed defects per unit (DPU) with a process-based complexity
factor, which included the total assembly time and the number
of assembly operations. Shibata [14, 19] detailed the model
proposed by Hinckley by subdividing the product assembly
process into a series of workstations and, besides, by introduc-
ing a design-based assembly complexity factor. In line with the
research carried out by Hinckley and Shibata in the field of
semiconductor products, Su et al. [12] developed a new math-
ematical model of defects generation to match the characteris-
tics of copier assembly. Antani [20] successfully tested the
hypothesis that manufacturing complexity, which incorporates
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variables driven by design, process and human-factors, could
reliably predict product quality in mixed-model automotive as-
sembly. Krugh et al. [6, 9] adapted the predictive model meth-
odology proposed by Antani for use with automotive electro-
mechanical connections in a large complex system. Falck et al.
[10] proposed amethod for predictive assessment of basic man-
ual assembly complexity by developing a tool to predict and
control operator-induced quality errors.

In recent studies, the aforementioned models for defect
prediction have been exploited for obtaining reliable estimates
of defect occurrence probabilities in single-unit and low-
volume productions. The most distinctive characteristic of
such productions, although they may also be long-term last-
ing, is the low production rate and the high level of complexity
and customization. For that reason, traditional statistical pro-
cess control (SPC) techniques are often not appropriate [1, 11,
21–24]. These probabilities, together with several parameters
related to inspection effectiveness and cost, are combined into
a probabilistic model. Accordingly, two indicators depicting
the overall inspection effectiveness and cost are derived in
order to select the most effective and economically convenient
inspection strategies.

Despite the importance of the issues relating to quality
control in manufacturing processes, few studies proposed suit-
able models to plan quality inspections under uncertainty (see
e.g. [24–26]). More in detail, no previous study investigated
the combined use of the models of defects generation and the
quality inspection indicators with the related uncertainty to
plan effective and affordable inspection strategies. This paper
aims to extend the analysis carried out by the authors in pre-
vious works [1, 2, 11, 27] by proposing a methodology to
evaluate the uncertainty of defectiveness predictions and costs
in quality inspection of low-volume assembly manufacturing
processes. The paper focuses the attention on the following
two research questions:

& RQ1: Considering a low-volume production, how can the
uncertainty of models for defectiveness and cost predic-
tions be assessed?

& RQ2: How does this uncertainty affect the selection of the
most effective and affordable inspection strategy?

Starting from previous models for defects and costs predic-
tions in assembly processes for low-volume productions, this
study introduces a new methodology to evaluate the uncer-
tainty of each statistical model by applying the law of combi-
nation of variances [28, 29]. Accordingly, the uncertainty is
propagated to two inspection indicators which depict the over-
all effectiveness and cost of an inspection strategy. In order to
test the proposed methodology, a case study concerning the
assembly of mechanical components in the manufacturing of
hardness testing machines is analyzed. The method allows to
compare, with the required level of confidence, alternative

inspection strategies, basing on the residual defectiveness after
quality controls and the relating overall cost.

The remainder of the paper is organized into four sections.
Section 2 illustrates some models of defects generation and
the concept of inspection effectiveness and related cost.
Section 3 presents a methodology to estimate the variability
of the parameters of the defect generation models and the
inspection strategy. Section 4 proposes a structured case study,
concerning the application of the methodology in the low-
volume production of hardness testing machines. Section 5
summarizes the contributions of this research, including its
possible limitations.

2 Defect generation and inspection models

2.1 Review of defect prediction models in assembly

In this section, a short review of the most diffused defect
prediction models developed for assembly processes is pre-
sented. Such models, recently analyzed and compared in the
study of Galetto et al. [27], have been successfully exploited in
the scientific literature to design and manage assembly com-
plexity (see e.g. [30–32]).

In the assembly of semiconductors, Hinckley showed
that the occurrence of defects could be predicted using
the complexity of the assembly process [17, 18].
Specifically, he found empirically that the defects per
unit (DPU) were positively correlated with the total as-
sembly time and negatively correlated with the number
of assembly operations.

In later studies, Shibata [14, 19] applied Hinckley’s model
to the assembly of Sony® home audio products, by introduc-
ing the decomposition of the product assembly process into a
series of steps or workstations [12], in which a certain number
of job elements (elementary operations) are performed. In or-
der to predict the DPU in each workstation, he defined as
predictors the process-based and the design-based complexity
factors related to each workstation. The first predictor, similar
to the complexity factor defined by Hinckley, is positively
correlated with the workstation total assembly time and nega-
tively correlated with the number of job elements in the work-
station (see Eq. (2) [14]). The second predictor is based on the
evaluation score from the Design for Assembly Cost-
Effectiveness (DAC) method, developed by Sony
Corporation [19, 33]. The two predictors were combined in
a bivariate prediction model following a power-law relation-
ship (see Eq. (1)).

According to the unsatisfactory result obtained by applying
Shibata’s model to copier assembly, Su et al. [12] redesigned
the approach to better adapt to the characteristics of copiers
[12]. Specifically, a new process-based complexity factor was
formulated by considering Fuji Xerox Standard Time instead
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of Sony Standard Time and by integrating the time variation
[12]. The design-based complexity factor was redesigned by
combining Ben-Arieh’s method [34] with the analytic hierar-
chy process (AHP) approach [35] (see Eq. (3)).

2.2 Model for defectiveness prediction

In this paper, the adopted defect generation model, reported in
Eq. (1), is based on the abovementioned studies proposed by
Shibata [14], Su et al. [12] and Galetto et al. [27].

According to Shibata [14], the assembly process can
be subdivided into a series (m) of manufacturing oper-
ations, later called “workstations” by Su et al. [12],
defined through sheets of operation standard. Each
workstation can be divided into a certain number (Na,i)
of “job elements” [36], i.e. elementary operations, char-
acterized by definite start and end points [14], as sche-
matized in Fig. 1.

DPUi ¼ k3 � C f k1P;i � C f k2D;i ð1Þ

In Eq. (1), DPUi represents the defects per product unit
occurring in each workstation i, which falls between 1 and
m, i.e. the total number of workstations; CfP,i and CfD,i are
the two predictors of the defect model, respectively the
process-based complexity factor (see Eq. (2)) and the
design-based complexity factor (see Eq. (3)) of a gener-
ic workstation i; k1, k2, and k3 are three regression co-
efficients that may be obtained by a power-law nonlin-
ear regression [27].

The process-based complexity factor of a generic worksta-
tion i, CfP,i, is defined as follows [14]:

C f P;i ¼ ∑
Nai

j¼1
SSTij−t0 � Na;i ¼ TATi−t0 � Na;i ð2Þ

where Na,i is the number of job elements in the workstation i,
SSTij is the time spent on job element j in the workstation i,
TATi is the total assembly time relevant to the workstation i,
and t0 is the threshold assembly time, i.e. the time required for
performing the least complex assembly operation. Further in-
formation about the Sony Standard Time (SST) is provided by
Shibata [14] and Aft [36].

The design-based complexity factor, CfD,i, was introduced
by Su et al. [12] in addition to the previously mentioned CfP,i
for predicting defects in each workstation. This factor is eval-
uated using specific geometrical and non-geometrical param-
eters, which are selected according to the characteristics of the
products to be assembled [34]. For instance, the parameters
used to describe the design complexity of an electromechan-
ical product are, in detail, components shape, required forces,
coupling directions, components alignment, components size,
components geometry, ratio between components size and
geometry, components play, worktable stability, equipment
requirements and electrical disturbances. These parameters
will also be used in the case study presented in Section 4.
When dealing with electromechanical products, the design-
based complexity factor may be defined as follows [11, 12]:

C f D;i ¼ ∑
l

q¼1
wq � 1e � ∑

e

k¼1
Akqi

� �
ð3Þ

where q falls between 1 and l, i.e. the total number of param-
eters selected as criteria for evaluating the design-based as-
sembly complexity; wq is the weight of the parameter q allo-
cated on a scale between 0 and 1 using the analytic hierarchy
process (AHP) approach [37]; e is the number of evaluators
involved in the comparison of the relative importance of each
parameter to determine the difficulty of putting a part into a
product; the degree of difficulty Akqi is the evaluation of the
parameter q in the workstation i estimated by the evaluator k
(it is a score between 0 and 10).

The probability of occurrence of at least one defect in each
workstation i (pi) may be estimated as the fraction of
nonconforming units in the workstation i [22]. Accordingly,
pi may be calculated by exploiting the defect rates obtained
using Eq. (1) and the number of job elements in the relative
workstation, as shown in Eq. (4) [11]:

pi ¼ 1− 1−
DPUi

Na;i

� �Na;i

ð4Þ

It should be remarked that Eq. (4) is obtained under the
assumptions that (i) each job element may introduce at most

Fig. 1 Schematic representation of the assembly process of a product,
according to Shibata [14] and Su et al. [12]
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one defect, and (ii) for each workstation i, the probability of
occurrence of a defect is the same for each job element
[11, 17].

2.3 Modelling of inspection effectiveness and costs

The conformity of each workstation-output can be checked
using different inspection strategies, depending on the type
of defect to be detected. For instance, dimensional verifica-
tion, visual check or comparison with reference exemplars
may be adopted [3, 38, 39]. Accordingly, different inspection
strategies may be defined [11, 40, 41].

Each ith workstation of the assembly process may be
modelled by a Bernoulli distribution [22]. Accordingly, it
can be described by the following three probabilities:

& pi: probability of occurrence of a defective-workstation-
output (which is est imated as the fract ion of
nonconforming units in the workstation i);

& αi: probability of erroneously signalling a defective-
workstation-output (i.e. type-I inspection error);

& βi: probability of erroneously not signalling a defective-
workstation-output (i.e. type-II inspection error)

where i= 1, …, m, i.e. the total number of workstations.
The first probability, pi, concerns the defectiveness and,

therefore, the quality of the ith workstation. It may be estimat-
ed, as a first approximation, by using Eq. (4). Inspection er-
rors, αi and βi, concern the quality of the inspection and are
strictly related to the characteristics of the inspection activity
and the technical skills and experience of the inspector. They
may be estimated based on prior experience, e.g. by using
empirical values obtained in similar processes, or simulations
[42–45].

According to previous studies, inspection effectiveness
may be represented using a practical indicator defining the
mean total number of defective-workstation-outputs which
are erroneously not detected in the overall inspection strategy
[1, 11]. According to Franceschini et al. [1], the inspection
effectiveness indicator, D, is defined as follows:

D ¼ ∑
m

i¼1
E X ið Þ ¼ ∑

m

i¼1
pi � βi ð5Þ

where Xi is a Bernoulli random variable equal to zero when
either a defective-workstation-output is correctly signalled or
no defect is present in the ith workstation, and equal to one
when a defective-workstation-output is erroneously not sig-
nalled in the ith workstation.

It is worth remarking that the indicator D is obtained under
both the following assumptions: the occurrence of defects and
that of inspection errors are uncorrelated, and the parameters
related to different workstations are uncorrelated.

In order to provide a more general overview of the inspec-
tion design, an inspection cost indicator aimed at evaluating
the economic effects of inspection design should also be con-
sidered [3, 44, 46]. Franceschini et al. [1] proposed in a pre-
vious work an indicator depicting the total cost of the inspec-
tion strategy. It included the cost of the specific inspection
activity, the necessary- and the unnecessary-repair costs, and
the cost of undetected defects, as shown in Eq. (6):

Ctot ¼ ∑
m

i¼1
Ctot;i ¼ ∑

m

i¼1
ci þ NRCi � pi � 1−βið Þ þ URCi � 1−pið Þ � αi þ NDCi � pi � βi½ �

ð6Þ
where:

& ci is the cost of the ith inspection activity (e.g. manual or
automatic inspection activities);

& NRCi is the necessary-repair cost, i.e. the necessary cost
for removing the defective-workstation-outputs;

& URCi is the unnecessary-repair cost, i.e. the cost incurred
when identifying false defective-workstation-outputs, e.g.
despite there is no cost required for defective-workstation-
outputs removal, the overall process can be slowed down,
with a consequent extra cost.

& NDCi is the cost of undetected defective-workstation-out-
puts, i.e. the cost related to the missing detection of defec-
tive-workstation-outputs.

Apart from the estimate of the probabilities pi, αi and βi, the
calculation of the total cost requires the estimate of additional
cost parameters. In general, ci andNRCi are known costs,URCi

is likely to be relatively easy to estimate, whileNDCi is difficult
to estimate since it may depend on difficult-to-quantify factors,
such as image loss and after-sales repair cost [23].

The indicator Ctot provides a preliminary indication of the
total cost related to the inspection strategy in use. In this sense,
it can be used as a proxy for economic convenience of an
inspection strategy.

3 Uncertainty evaluation

In order to assess the reliability of the estimates of the defect
probabilities, pi, and of the two indicators of inspection effec-
tiveness and costs, D and Ctot, a quantitative indication of the
variability of the prediction should be provided. To this aim, a
procedure for characterizing the variability of predictions
based on the evaluation of the uncertainty is proposed. The
methodology proposed relies on the GUM (guide to the ex-
pression of uncertainty in measurement) [29], according to
which the uncertainties of the model variables are obtained
by applying the usual method for the combination of variances
[28, 29].
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3.1 Uncertainty evaluation of models
for defectiveness prediction

The defects per unit in the ith workstation, DPUi, and the
probability of occurrence of the ith defective-workstation-out-
put, pi, are two random variables. Their mean values are esti-
mated by Eqs. (1) and (4) reported in Section 2. In addition,
being DPUi and pi statistical variables, their variability can be
related to the variability of the other model parameters.

Let us assume that the uncertainty of the model parameters
in terms of variance is known. Accordingly, the variances of
both DPUi and pi may be estimated by applying the law of
combination of variances [28].

As far as the variance of DPUi is concerned, it can be
derived by combining the variances of the parameters k1, k2
and k3, for predefined values of CfP,i and CfD,i, as reported in
matrix form in Eq. (7):

VAR DPUið Þ≈

∂DPUi

∂k3
∂DPUi

∂k1
∂DPUi

∂k2

2
666664

3
777775

T

�
VAR k3ð Þ cov k3; k2ð Þ cov k3; k1ð Þ
cov k3; k2ð Þ VAR k2ð Þ cov k2; k1ð Þ
cov k3; k1ð Þ cov k2; k1ð Þ VAR k1ð Þ

2
4

3
5 �

∂DPUi

∂k3
∂DPUi

∂k1
∂DPUi

∂k2

2
666664

3
777775

ð7Þ

The partial derivatives in Eq. (7) are evaluated at the mean

values of the input parameters (i.e. k*1, k
*
2, k

*
3 ). Therefore, Eq.

(7) becomes:

VAR DPUið Þ≈
C f k

*
1
P;i � C f k

*
2

D;i

k*3 � C f k
*
2
D;i � C f k

*
1
P;iln C f P;i

� �
k*3 � C f k

*
1
P;i � C f k

*
2
D;iln C f D;i

� �

2
664

3
775
T

�
VAR k3ð Þ cov k3; k2ð Þ cov k3; k1ð Þ
cov k3; k2ð Þ VAR k2ð Þ cov k2; k1ð Þ
cov k3; k1ð Þ cov k2; k1ð Þ VAR k1ð Þ

2
4

3
5 �

C f k
*
1

P;i � C f k
*
2
D;i

k*3 � C f k
*
2
D;i � C f k

*
1

P;iln C f P;i
� �

k*3 � Cf k
*
1

P;i � C f k
*
2
D;iln C f D;i

� �

2
664

3
775 ð8Þ

The variance-covariance matrix reported in Eqs. (7) and (8)
may be derived by applying Eq. (9) [47]:

VAR k3ð Þ cov k3; k2ð Þ cov k3; k1ð Þ
cov k3; k2ð Þ VAR k2ð Þ cov k2; k1ð Þ
cov k3; k1ð Þ cov k2; k1ð Þ VAR k1ð Þ

2
4

3
5 ¼

VAR k3ð Þ ρk3;k2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR k3ð Þ�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR k2ð Þ

p
ρk3;k1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR k3ð Þ�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR k1ð Þ

p
ρk3;k2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR k3ð Þ�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR k2ð Þ

p
VAR k2ð Þ ρk2;k1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR k2ð Þ�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR k1ð Þ

p
ρk3;k1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR k3ð Þ�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR k1ð Þ

p
ρk2;k1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR k2ð Þ�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR k1ð Þ

p
VAR k1ð Þ

2
64

3
75 ð9Þ

where ρk3;k1 is the correlation coefficient between k3 and
k1, ρk3;k2 is the correlation coefficient between k3 and k2,
and ρk2;k1 is the correlation coefficient between k2 and
k1.

Similarly, the variance of the probability of occurrence of
the ith defective-workstation-output may be calculated by ap-
plying the law of combination of variances to Eq. (4), as fol-
lows [28]:

VAR pið Þ≈ ∂pi
∂DPUi

� �2

� VAR DPUið Þ ð10Þ

where the partial derivative, ∂pi
∂DPUi

, is evaluated at the

mean value of the input parameter DPU*
i

� �
. Therefore,

it results:

VAR pið Þ≈ 1−
DPU*

i

Na;i

� �2� Na;i−1ð Þ
� VAR DPUið Þ ð11Þ

In Eq. (11), the variance of DPUi may be calculated using
Eq. (8).

3.2 Uncertainty evaluation of inspection effectiveness
and costs

Once the variance of pi is obtained, the same reasoningmay be
applied to the indicator of inspection effectiveness shown in
Eq. (5). Specifically, in the hypothesis of the absence of cor-
relations between defects originated in different workstations
and between defects and inspection, as mentioned in
Section 2.2, the variance of D may be derived as reported in
Eq. (12).

VAR Dð Þ ¼ VAR ∑
m

i¼1
E X ið Þ

� �
¼ ∑

m

i¼1
VAR E X ið Þ½ � ¼ ∑

m

i¼1
VAR pi � βið Þ

ð12Þ

As a result, Eq. (13) is obtained:

VAR Dð Þ≈ ∑
m

i¼1

∂E X ið Þ
∂pi

∂E X ið Þ
∂βi

2
664

3
775
T

� VAR pið Þ 0
0 VAR βið Þ

� �
�

∂E X ið Þ
∂pi

∂E X ið Þ
∂βi

2
664

3
775

2
664

3
775 ð13Þ
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The partial derivatives in Eq. (13), i.e. ∂E X ið Þ
∂pi

and
∂E X ið Þ
∂βi

, are evaluated at the mean values of the input

parameters (p*i and β*
i ). Accordingly, Eq. (14) is derived:

VAR Dð Þ≈ ∑
m

i¼1
β*2
i � VAR pið Þ þ p*2i � VAR βið Þ	 
 ð14Þ

where the variance of pi may be calculated using Eq. (11).
As can be seen from Eq. (14), the variance of D is the sum

of the variances of the parameters pi and βi, weighted respec-

tively by the squares of β*
i and p

*
i . It should be noticed that the

effect of relatively higher variances of pi can be compensated
by relatively lower βi values, and vice versa.

With respect toCtot (see Eq. (6)), the relevant variance may
be expressed as:

VAR Ctotð Þ ¼ VAR ∑
m

i¼1
VAR Ctot;i

� �� �
ð15Þ

again in the hypothesis of absence of correlations. From Eq.
(15), it is possible to obtain:

VAR Ctotð Þ≈ ∑
m

i¼1

∂Ctot;i

∂pi
∂Ctot;i

∂αi
∂Ctot;i

∂βi
∂Ctot;i

∂ci
∂Ctot;i

∂NRCi
∂Ctot;i

∂URCi
∂Ctot;i

∂NDCi

2
6666666666666666666664

3
7777777777777777777775

T

�

VAR pið Þ 0 0 0 0 0 0
0 VAR αið Þ 0 0 0 0 0
0 0 VAR βið Þ 0 0 0 0
0 0 0 VAR cið Þ 0 0 0
0 0 0 0 VAR NRCið Þ 0 0
0 0 0 0 0 VAR URCið Þ 0
0 0 0 0 0 0 VAR NDCið Þ

2
666666664

3
777777775
�

∂Ctot;i

∂pi
∂Ctot;i

∂αi
∂Ctot;i

∂βi
∂Ctot;i

∂ci
∂Ctot;i

∂NRCi
∂Ctot;i

∂URCi
∂Ctot;i

∂NDCi

2
6666666666666666666664

3
7777777777777777777775

ð16Þ

where the derivatives are once more evaluated at the mean
values of the parameters. Therefore, it results:

VAR Ctotð Þ≈ ∑
m

i¼1
NRCi−NRCi � βi−URCi � αi þ NDCi � βið Þ2 � VAR pið Þþ

h
þ URCi−URCi � pið Þ2 � VAR αið Þ

þ −NRCi � pi þ NDCi � pið Þ2 � VAR βið Þ þ VAR cið Þ þ þ pi−pi � βið Þ2 � VAR NRCið Þþ αi−pi � αið Þ2 � VAR URCið Þ

þ pi � βið Þ2 � VAR NDCið Þ�

ð17Þ

where the variance of pi can be once more calculated
using Eq. (11).

According to Eq. (17), the variance of Ctot is a sum of the
variances of the input parameters, weighted by polynomial
combinations of pi, αi, βi, NRCi, URCi and NDCi. It can be
noticed that the weights of the variances of the probability
parameters (pi, αi and βi) depend on both probability and cost
parameters, while the weights of the variances of the cost
parameters (ci, NRCi, URCi and NDCi) only depend on prob-
ability parameters.

4 Case study

4.1 Modelling of the assembly process of hardness
testing machines

In this section, the proposed methodology aimed at evaluating
the uncertainty of models for defectiveness prediction and
inspection effectiveness and cost is applied to a case study
concerning the assembly processes of a hardness testing ma-
chine, specifically AFFRI® LD 3000 AF. Since the
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production of these mechanical components is only of some
tens per year, the examined manufacturing process may be
considered a low-volume production. As far as the modelling
of the production process is concerned, the overall assembly
of hardness testers can be subdivided into nine phases. These
are in detail (1) threaded shaft, (2) machine working axis, (3)
axis movement mechanism, (4) machine head, (5) reference
plan movement device, (6) measurement device unit, (7) ma-
chine processing unit, (8) machine electrical system, (9) final
assembly.

This paper focuses on the overall assembly of the machine
head, which corresponds to the first four assembly phases
previously mentioned. Each of these four phases may be
subdivided into different workstations, as represented in
Fig. 2. Besides, the adopted inspection strategy requires each
workstation-output to be inspected by performing a
quality control activity. Different types of performed
controls may be adopted, according to the specific type
of defect to be detected. In particular, the inspections may be
geometric, mechanical, dimensional or a combination of them
(see Fig. 2).

4.2 Defectiveness prediction and variability
estimation

For each of the 18workstations of the machine head assembly,
the defects per unit, DPUi, are calculated according to the
defectiveness prediction model mentioned in Section 2.1.
The adopted power-law regression model is reported in Eq.
(18) and illustrated in Fig. 3. The estimates of the model pa-
rameters are obtained by applying a non-linear regression to
the data of 30 workstations related to a similar process
concerning the assembly of mechatronic devices [12, 14].

DPUi ¼ 3:04 � 10−5 � C f 1:27P;i � C f 1:49D;i ð18Þ
The process-based complexity factor, CfP,i, and the design-

based complexity factor, CfD,i, are calculated according to the
model proposed by Shibata [14] and Su et al. [12].
Specifically, for each ith workstation, the CfP,i are obtained
according to Eq. (2) by exploiting the total assembly time,
TATi, and the number of job elements Na,i, which are reported
in Table 1. The threshold assembly time, t0, is set to 0.5 min,
i.e. the time required to perform the least complex job element.

ASSEMBLY PHASE 1
Threaded shaft

Workstation Quality 
control

1. bearings -
support

geometric 

and 

mechanical

2. bearings -

threaded shaft

geometric 
and 

mechanical

3. threaded 

shaft –
bearing 

support

geometric 

and 

mechanical

4. threaded 

shaft - pulley

dimensional 

and 
mechanical

ASSEMBLY PHASE 2
Machine working axis

Workstation Quality 
control

5. guide -

carriage
mechanical

6. carriage -

block
geometric

7. spring 
holder -
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geometric 
and 

mechanical

8. nut screw -
spring holder

geometric

9. spring -
spring holder

mechanical
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Axis movement mechanism
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and 

mechanical
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mechanical
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mechanical
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Machine head
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14. motor -
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geometric 
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mechanical

16. reducer -
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geometric 

and 

mechanical

17. reducer -
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dimensional 
and 

mechanical

18. motor-
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mechanical

Fig. 2 Schematic representation of the workstations of the overall assembly of machine head, subdivided into four assembly phases, with the indication
of the specific type of performed control

Fig. 3 Surface plot of DPU
against CfP and CfD: theoretical
model and experimental points of
30 workstations concerning a
similar assembly process for
mechatronic devices
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The design-based complexity factor, CfD,i, is evaluated, ac-
cording to Eq. (3), by considering the eleven parameters re-
ported in Table 2 and the relative weights. These parameters,
concerning the complexity of the design of the assembly, are
slightly modified with respect to those relevant to copiers
chosen by Su et al. [12], in order to better match the charac-
teristics of hardness testing machines. Table 1 reports the ob-
tained process- and design-assembly complexity factors and
the defectiveness predictions.

The variances of the DPUi are estimated, according to
Eq. (8), by exploiting the variance-covariance matrix of the
regression parameters k1, k2 and k3. This matrix is derived,

according to Eq. (9) and using the software Minitab®, by
applying the QR decomposition produced by the Gauss-
Newton method for the nonlinear regression applied to the
model of Eq. (18) [47–50]. In particular, the obtained vari-
ances of the regression parameters and the Pearson correlation
coefficients are listed in Table 3.

In addition to the variances, the relative 95% confidence
interval and 95% prediction interval of each DPUi are calcu-
lated, according to Eqs. (19) and (20) respectively.

DPUi−2:052
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR DPUið Þ

p
;DPUi þ 2:052

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR DPUið Þ

p� �
ð19Þ

DPUi−2:052
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR DPUið Þ þ S2

q
;DPUiþ 2:052

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR DPUið Þ þ S2

q� �

ð20Þ

In Eqs. (19) and (20), S is the standard error of the regres-
sion, also called the standard error of the estimate:

S ¼
ffiffiffiffiffiffiffiffiffiffi
RSS
N−P

r
ð21Þ

where RSS is the sum of the squared residuals,N is the number
of observations and P is the number of free parameters.
Specifically, S is equal to 3.49·10−4, and it is still obtained
from the power-law nonlinear regression model of Eq. (18)
using the software Minitab®.

The standard error used in Eq. (19) for the calculation of
prediction intervals ofDPUi is also the standard uncertainty of
defects per unit that will be used to estimate the variability of
pi (see Eq. (11)) and that of the inspection strategy indicators

Table 1 Predictions of assembly
complexity factors and
defectiveness relevant to the
workstations of the machine head
assembly

Assembly phase no. Workstation no. TATi (min) Na.i (−) CfP.i (min) CfD,i (−) DPUi (−)

1 1 17.0 6 14.0 3.5 0.0055

2 15.5 7 12.0 3.7 0.0050

3 9.0 5 6.5 2.4 0.0012

4 9.5 6 6.5 3.3 0.0019

2 5 6.0 2 5.0 1.7 0.0005

6 11.0 3 9.5 2.9 0.0026

7 18.5 6 15.5 2.9 0.0049

8 5.0 3 3.5 4.8 0.0015

9 4.5 5 2.0 3.2 0.0004

3 10 13.5 7 10.0 4.0 0.0044

11 8.5 5 6.0 4.4 0.0026

12 4.5 3 3.0 3.2 0.0007

13 7.0 3 5.5 3.3 0.0015

4 14 3.0 2 2.0 3.7 0.0005

15 7.0 6 4.0 5.9 0.0025

16 3.0 2 2.0 3.7 0.0005

17 5.0 3 3.5 3.3 0.0009

18 12.5 6 9.5 3.4 0.0033

Table 2 Eleven parameters and relative weights used to evaluate the
design-based assembly complexity factors of hardness testing machines

Parameter no. Parameter description Weight

1 Components shape 0.095

2 Required forces 0.070

3 Coupling directions 0.104

4 Components alignment 0.167

5 Components size 0.118

6 Components geometry 0.119

7 Ratio between components size and geometry 0.081

8 Components play 0.130

9 Worktable stability 0.063

10 Equipment requirements 0.052

11 Electrical disturbances 0.000
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(see Eqs. (14) and (17)). Therefore, it will be denoted hereafter
as u (DPUi):

u DPUið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR DPUið Þ þ S2

q
ð22Þ

In Table 4 the obtained variances and the square of the
standard error of the prediction of defects per unit are reported,
together with the relative 95% confidence intervals (CI) and
the 95% prediction intervals (PI) ofDPUs, separately for each
workstation i.

After the prediction of the defect rates, for each ith work-
station the probability of occurrence of defective-workstation-
output, pi, is derived from DPUi by applying Eq. (4). As can
be observed in Table 5, the differences between DPUi and the
relative value of pi are negligible for low values. In other
words, pi values may be approximated by the corresponding
DPUi values. This result can be demonstrated considering the
first-order Maclaurin series expansion of pi with respect to
DPUi obtained from Eq. (4) [11].

The variances of pi are calculated according to Eq. (11) by
exploiting the DPUi uncertainty (see Eq. (22)) and are report-
ed in Table 5.

As mentioned in Section 4.1, the adopted inspection strat-
egy requires each workstation to be inspected using quality
controls shown in Fig. 2. Each inspection activity is affected
by inspection errors, αi and βi. In this case study, the inspec-
tion errors αi and βi (see Table 5) are estimated by exploiting
empirical values of similar assembly processes of mechatronic
devices. As far as the standard deviation of each inspection
error is concerned, it is assumed to be 5% of the relative value
of the parameter itself.

The empirical validation of the proposed model of defec-
tiveness prediction, and the associated uncertainty, is a critical
issue. Indeed, the assembly of hardness testing machines may
be considered a low-volume manufacturing process, and
therefore, a real data collection would require too much time
to be completed. In order to overcome this problem, a prelim-
inary validation of the methodology can be provided, for some
workstations, by collecting the data relevant to the assembly
of different models of hardness testing machines and
comparing the empirical values with those predicted.
Empirical values of DPUi which have cumulated over
the years for the various workstations confirm the re-
sults reported in Table 4. For the first four workstations,
for example, DPUi values are as follows: 0.005 for the
first and the second workstations, 0.0015 for the third
workstation and 0.0020 for the fourth workstation.
Accordingly, the corresponding empirical values of pi
are consistent with those reported in Table 5 [11].
Empirical values of pi observed over the years are 0.54 for
the first workstation, 0.50 for the second, 0.12 for the third and
0.20 for the fourth workstation.

Table 4 Defects per unit in each
workstation i (DPUi), variance of
DPUi (VAR (DPUi)), square of the
standard error of the prediction of
DPUi (u

2(DPUi)), 95%
confidence interval (CI)
and 95% prediction interval
(PI) of DPUi

Workstation no. DPUi VAR (DPUi) u2(DPUi) 95% CI (DPUi) 95% PI (DPUi)

1 0.0055 6.77·10−9 1.28·10−7 0.0054; 0.0057 0.0048; 0.0063

2 0.0050 5.70·10−9 1.27·10−7 0.0048; 0.0051 0.0042; 0.0057

3 0.0012 1.15·10−9 1.23·10−7 0.0011; 0.0012 0.0005; 0.0019

4 0.0019 2.53·10−9 1.24·10−7 0.0018; 0.0020 0.0012; 0.0026

5 0.0005 3.32·10−10 1.22·10−7 0.0005; 0.0005 − 0.0002; 0.0012
6 0.0026 3.02·10−9 1.25·10−7 0.0025; 0.0027 0.0019; 0.0033

7 0.0049 7.33·10−9 1.29·10−7 0.0047; 0.0050 0.0041; 0.0056

8 0.0015 3.52·10−9 1.25·10−7 0.0014; 0.0017 0.0008; 0.0023

9 0.0004 4.54·10−10 1.22·10−7 0.0004; 0.0005 − 0.0003; 0.0011
10 0.0044 5.59·10−9 1.27·10−7 0.0043; 0.0046 0.0037; 0.0052

11 0.0026 4.86·10−9 1.26·10−7 0.0025; 0.0028 0.0019; 0.0034

12 0.0007 8.52·10−10 1.22·10−7 0.0006; 0.0007 0.0000; 0.0014

13 0.0015 2.08·10−9 1.24·10−7 0.0015; 0.0016 0.0008; 0.0023

14 0.0005 6.89·10−10 1.22·10−7 0.0005; 0.0006 − 0.0002; 0.0012
15 0.0025 7.74·10−9 1.29·10−7 0.0023; 0.0026 0.0017; 0.0032

16 0.0005 6.89·10−10 1.22·10−7 0.0005; 0.0006 − 0.0002; 0.0012
17 0.0009 1.18·10−9 1.23·10−7 0.0008; 0.0009 0.0002; 0.0016

18 0.0033 3.97·10−9 1.25·10−7 0.0031; 0.0034 0.0025; 0.0040

Table 3 Variances and correlation coefficients of the regression
parameters k1, k2 and k3

Parameter variance Parameters’ correlation coefficient

VAR(k1) 5.73⋅10−4 ρk1 ;k3 − 0.85
VAR(k2) 3.54⋅10−4 ρk3 ;k2 − 0.30
VAR(k3) 4.65⋅10−12 ρk1 ;k2 − 0.24
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4.3 Inspection effectiveness and costs

The inspection effectiveness indicator, D, may be obtained by
applying Eq. (5) and using the estimates of the probabilities
reported in Table 5. The resulting mean total number of
defective-workstation-outputs which are erroneously not sig-
nalled in the overall inspection strategy is:

D ¼ ∑
18

i¼1
pi � βi ¼ 1:70 � 10−4 ð23Þ

The obtained value indicates that, on average, in every ten
thousand hardness testing machines assembled, 1.7 (about 2)
are not detected by the adopted inspection strategy as defec-
tive, when they are actually not conforming.

The uncertainty associated with this value of inspection
effectiveness may be calculated, according to Eq. (24), from
the sum of the variances of the parameters pi and βi, weighted
respectively by the squares of βi and pi, as follows:

VAR Dð Þ ¼ ∑
18

i¼1
β2
i � VAR pið Þ þ p2i � VAR βið Þ	 
 ¼ 7:95 � 10−11 ð24Þ

Once the uncertainty of D is obtained, the 95% con-
fidence interval for D may be derived. Therefore, it
results: (1.52·10−4; 1.88·10−4).

According to the obtained results, it can be concluded that
the mean number of defective-workstation-outputs which are
not detected by the adopted inspection strategy is, with a con-
fidence level of 95%, of about 2 units, considering a production
of ten thousand machine heads. As mentioned before, the

production of the examined type of hardness testers is only of
some tens per year. As a result, the amount of defective-
workstation-outputs which are erroneously not identified by
the inspection strategy may be considered negligible.

If the methodology is extended to the other five phases in
which the assembly of hardness testing machines is
decomposed, the indicatorD becomes 3.8∙10−4, and the relative
95% confidence interval results (3.42·10−4; 4.22·10−4).
Therefore, in the overall assembly of hardness testers, it can
be affirmed with a confidence level of 95% that there are about
4 undetected defective-workstation outputs. These results are
considered reasonable by the producer of hardness testing ma-
chines and are supported by the experience gained over the
years in the field.

Furthermore, this methodology may be applied to separate-
ly analyze and compare the addends pi∙βi of the total inspec-
tion effectiveness D, which can be used to identify the most
critical workstations in terms of residual defectiveness. For
instance, according to the parameters’ estimates reported in
Table 5, the workstations with the highest values of pi∙βi are
the number 10 and the number 15. Therefore, the producer
could design and adopt a more effective inspection activity in
these two critical workstations.

Table 6 reports the estimates of the cost parameters for each
workstation. These estimates were calculated considering the
time required for identifying and repairing possible defective-
workstation-outputs, and the labour cost of operators/
inspectors.

The information contained in Table 6 may be exploited to
derive the total cost for inspection and defective-workstation-

Table 5 Estimates of
probabilities pi and relative
variances, αi and βi relevant to
each inspection activity of the
workstation of machine head
assembly

Assembly phase no. Workstation no. pi (%) VAR (pi) αi (%) βi (%)

1 1 0.55 1.27·10−7 2.0 0.5

2 0.49 1.26·10−7 1.0 0.1

3 0.12 1.22·10−7 3.0 1.0

4 0.19 1.24·10−7 1.5 0.5

2 5 0.05 1.22·10−7 0.5 0.1

6 0.26 1.24·10−7 3.5 1.0

7 0.49 1.28·10−7 0.5 0.1

8 0.15 1.25·10−7 1.0 0.2

9 0.04 1.22·10−7 0.5 0.1

3 10 0.44 1.26·10−7 4.0 0.7

11 0.26 1.26·10−7 0.5 0.1

12 0.07 1.22·10−7 0.5 0.1

13 0.15 1.23·10−7 1.0 0.2

4 14 0.05 1.22·10−7 0.5 0.1

15 0.25 1.29·10−7 3.0 1.5

16 0.05 1.22·10−7 0.5 0.1

17 0.09 1.23·10−7 1.0 0.3

18 0.33 1.25·10−7 0.5 0.1
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outputs removal related to the overall production process
(Ctot), according to Eq. (6):

Ctot ∑
m

i¼1
Ctot ;i ¼ 7:35 € ð25Þ

Considering that the standard deviation of each cost param-
eter is assumed to be 5% of the relevant value of the parameter
itself, the variance of Ctot can be obtained, according to Eq.
(17):

VAR Ctotð Þ ¼ 0:02€2 ð26Þ

Finally, the 95% confidence interval for Ctot may be
expressed as (7.06, 7.64) €.

By extending the analysis to the other five process phases,
the indicator Ctot becomes 16.53 €, and the 95% CI becomes
(15.88, 17.18) €. These results, considered reasonable by the
producer of hardness testing machines, are a preliminary indi-
cation of the total cost related to the inspection strategy in use.
In this sense, they can be used as a proxy for economic
convenience of the inspection strategy and could be
useful to compare the adopted inspection strategy with
others, such as partial inspections in selected worksta-
tions, or strategies in which current control activities are mod-
ified or improved.

5 Conclusions

Defect prevention and elimination are increasingly being
adopted in the manufacturing field, since the presence of

defects may greatly affect the final quality and cost of prod-
ucts. Many works have been proposed in the literature in the
field of defect generation models, especially for predicting
operator-induced assembly defects. In more recent years, the
focus has been on exploiting these models to obtain reliable
predictions of the probability of occurrence of defects at each
stage of the production, with the goal of designing quality
control strategies for low-volume productions. In fact, because
of the nature of these productions, which are characterized by
small lots or batches, or even unique pieces, the traditional
statistical process control methods are often not appropriate.
However, the existing methodologies adopted to evaluate de-
fectiveness and inspection effectiveness in low-volume pro-
ductions do not include a robustness analysis, without which
reliable results cannot be obtained.

A methodology for evaluating the uncertainty of the aver-
age outgoing defectiveness and total cost of inspection strate-
gies in low-volume assembly manufacturing processes has
been proposed in this paper. The uncertainties of the statistical
variables of the model for defectiveness prediction (pi and
DPUi) have been evaluated by applying the law of combina-
tion of variances. Accordingly, the uncertainty has been prop-
agated to the inspection indicator which depicts the overall
effectiveness of inspection strategies, D, and to the cost indi-
cator which provides an indication of the total cost related to
the inspection strategy in use,Ctot. The proposed approach has
been tested on an industrial case study concerning the assem-
bly of mechanical components in the manufacturing of hard-
ness testing machines. The results show the potential of the
method in providing reliable estimates of the inspection de-
sign parameters.

Table 6 Estimates of cost
parameters relevant to each
workstation, in the overall
assembly of the machine head

Assembly phase no. Workstation no. ci (€) NRCi (€) URCi (€) NDCi (€)

1 1 0.17 1.75 1.75 20.94

2 0.17 1.75 1.75 20.94

3 0.17 1.75 1.75 20.94

4 0.35 0.70 0.70 6.98

2 5 0.10 0.78 0.78 23.40

6 0.20 1.95 1.95 23.40

7 0.20 1.95 1.95 11.70

8 0.21 2.09 2.09 50.16

9 0.10 0.78 0.78 7.80

3 10 2.09 4.18 4.18 50.16

11 0.10 0.39 0.39 3.90

12 0.10 0.39 0.39 3.90

13 0.10 0.39 0.39 3.90

4 14 0.10 0.39 0.39 3.90

15 0.36 1.82 1.82 10.93

16 0.09 0.36 0.36 3.64

17 0.36 0.73 0.73 7.28

18 1.82 3.64 3.64 10.93
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The main contribution of the proposed methodology lies in
the quantitative evaluation of the uncertainty related to the
models for defectiveness and inspection cost predictions.
Indeed, through the estimates of the inspection design param-
eters and the relevant uncertainties, it is possible to compare
alternative inspection strategies, in terms of outgoing defec-
tiveness and overall cost, with the required level of confi-
dence. Furthermore, this approach can be easily extended
and applied to a wide range of different industrial contexts,
involving low-volume and single-unit assembly production
processes.

Although the mathematical modelling may appear com-
plex and difficult to be implemented by production engineers
in the Gemba, it can be easily automated and the whole pro-
cess for data acquisition and defect prediction can be guided
by specific software procedures, which draw information by
historical databases and on-the-field acquisitions. A prelimi-
nary prototype of this software has already been tested in a
production of components for the automotive industry.

Some limitations of the methodology arise from the sim-
plifying assumptions of the absence of correlation between the
occurrence of defects and inspection errors. These assump-
tions are usually acceptable for most of the applications, but
in particular situations, they are not verified. This topic will be
deepened in a future research.

Furthermore, the model requires the estimation of various
not-so-easily-quantifiable parameters, but a deep knowledge
of the process and the on-field experience of experts may
contribute to overcome this issue.
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